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Abstract.  The Dallas Semiconductor iButton™ is one of a new breed of 
devices that can be used as hardware tokens in the PKI arena. This paper 
introduces and gives an overview to the iButton™ family, focusing on the 
hardware component, and examines potential areas that may be 
susceptible to attack. These areas may yield vulnerabilites or problems 
related to the secureness of the device. Detail is placed on the Java™-
powered cryptographic iButton™, which plays a major role in the 
implementation of PKI or other solutions where security and/or encryption 
is needed. Simple software routines to communicate with the iButton™ are 
also presented.  
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1 Introduction to the iButton™ 
 

The Dallas Semiconductor iButton™ is a unique device meant to replace 
smartcards, magnetic stripe cards, barcodes, and radio-frequency proximity 
cards (RFID) for use in access control, cashless transactions, PKI, 
authentication, identification, Internet commerce and many other solutions 
that require portability and security [5]. 

The physical device is a 16mm dime-sized metal can (Figure 1). There are a 
number of advantages to the iButton™ compared to previously used hardware 
token devices: 
 
• Rugged. The iButton™ is housed in a water-proof, stainless steel metal 

housing. Due to the housing armor, the iButton™ can withstand extreme 
environmental conditions and handling with no loss of data or 
performance. The device has been wear-tested for 10-year durability. The 
ruggedness of the device is an extreme advantage over smartcards and 
other devices that contain only minimal circuitry protection. For example, 
smartcard contacts are inherently fragile and any mishandling often leads 
to wirebond breakage and irrepairable damage. 

 
• Wearable. Unlike credit card-sized smartcards and large keychain-sized 

USB keys and other hardware tokens, the iButton™ is small enough to 
mount onto wearable accessories.  
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• Tamper Responsive. The iButton™ has been touted as having a number 

of tamperproofing features which prevent the device from being physically 
attacked with invasive methods. A later section describes these specific 
features. 

 

 
 

Figure 1: Typical appearance of an iButton™. [3] 

 
The family of iButtons™ is split into two sections: 

 
• Touch Memory iButtons™ make up a large portion of the family. These 

devices can serve as replacements for stored-value or debit card 
applications, the majority of which are currently handled by smartcards. 

 
• Java™-powered Cryptographic iButtons™ consist of a microprocessor 

and high-speed math accelerator, the foundations for a complete 
cryptographic engine. The device also runs a Java Card 2.0-compliant Java 
Virtual Machine.  

 
2 Touch Memory iButtons™ 
 

The first generation of the iButton™ family consist of the Touch Memory 
devices. These devices are often used for very specific implementations. 
Depending on the button type, a variety of application-specific features are 
provided [6]: 
 
• Up to 64Kbit of One-Time Programmable Read-Only Memory 
• Up to 64Kbit of Non-Volatile RAM 
• Temperature Sensor 
• Real-Time Clock 
 

Any type of digital data can be stored in these buttons. Unfortunately, none 
of the Touch Memory iButtons™, with the exception of the Monetary, Crypto, 
and Multikey iButtons™, employ any type of security protection to limit access 
to the data stored on the button.   



 3

 
3 Java™-Powered Cryptographic iButton™ 
 

Often considered the second generation of the iButton™ family is the 
Java™-Powered Cryptographic iButton™, also referred to as the DS1954. The 
device is a feature-rich iButton™ with a focus on e-commerce and secure 
transactions. Although the iButtons™ can be mounted in a variety of fashions, 
the Java™-Powered Cryptographic iButton™ is most often crafted into a ring 
(Figure 2).   
 
 
 

 
 

Figure 2: Typical appearance of the Java™-powered cryptographic ring. [3] 

 
The Java™-Powered Cryptographic iButton™ has a feature set that 

mimics, and often betters, that which is supported by smartcards and other 
hardware token devices [14, 15]: 
 
• 8051-compatible microcontroller. The Dallas Semiconductor DS83C950 

security processor was specifically designed for security-concious 
applications. 

 
• High-speed math accelerator. Designed for 1024-bit public key 

cryptography. 
 
• Large ROM/RAM configuration. 6kB of Non-Volatile RAM and up to 

64kB ROM allow sufficient memory space for the pre-loaded Java™ Virtual 
Machine (JVM) and execution of multiple Java™ applets.  

 
• Java Card™ 2.0-compliant.  
 
• Pending FIPS 140-1 security certification. Designed for compliance to 

the U.S. government standards for cryptographic devices.  
 
 By designing the iButton™ with hardware cryptographic support and by 
allowing the device to execute Java™ applications, a number of security 
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solutions can be implemented. The tamperproofing features of the iButton™ 
are designed to prevent intruders from accessing critical data and obtaining 
private keys from the device. 
 The physical design of the device is aimed to be responsive to tampering. 
By viewing the internal detail of the Cryptographic iButton™ (Figures 3, 4), 
some of the attempts at tamper detection are evident. The two microswitches 
could potentially be bypassed or replaced as to avoid tamper detection. The 
32.768kHz quartz crystal is used to control the real-time clock, not the whole 
system. However, manupulating this signal might have some attack benefits. 
Attack mechanisms are discussed in a later section of the article. 

 

 
 

Figure 3: Assembly detail of the cryptographic ring. [15] 
 

 
 

Figure 4: Internal construction detail of the cryptographic ring. [13] 
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4 Low-Level Functionality 
 
4.1 Identification 
 

All the iButtons™ have the same underlying technology for communication 
using the novel Dallas 1-Wire™ interface. The data is both read and written 
with a single I/O pin plus signal ground. By toggling the direction of a port pin 
(input or output) on a microprocessor, one can transmit commands, serially, bit 
by bit, to the iButton™ and read its responses.   

By using minimal electronic circuitry, often just a pull-up resistor and a 
Zener or Transient Voltage Suppressing diode for port pin protection from 
static discharge, one can easily interface the iButton™ with a microprocessor or 
host PC. The internal circuitry of the iButton™ lends itself to easy, albeit 
timing-sensitive, communications.  

Each iButton™, no matter what type, is assigned a 64-bit unique ID etched 
into the silicon and engraved on the stainless steel housing (Figure 5). This 
number can be the credential for a basic security scheme and act as a low-cost 
electronic key.  

 
 

 
Figure 5: 64-bit ID unique to each iButton™. [9] 

 
• Family Code. The 1-byte family code identifies the specific type of 

iButton™.  
 
• Serial Number. The 6-byte serial number is said by Dallas Semiconductor 

to be unique and un-alterable. Various potential attacks could be mounted 
using the "uniqueness" of a device, which are discussed in a later section.  

 
• CRC. The 1-byte Cyclic Redundancy Check (CRC) is derived from the 

value of the first 56 bits [10]. This can and should be used by the host 
system to verify proper data transfer. 

 
Currently, the 64-bit unique ID is not secret and is printed directly onto 

the stainless steel housing of the iButton™. Other information is also 
displayed, including date stamp, package revision, and package type (Figure 6). 
If the security implementation is based solely on the ID itself, displaying the 
unique ID in plain view is not advisable and may lead to cloning or spoofing 
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attacks. In addition, past experience has shown that people will use their 
readily accessible value as data input to the cryptographic keying process. For 
example, Dallas Semiconductor recommends "using the never duplicated 
number to seed an encryption algorithm" [11]. Lax implementations of 
encryption algorithms lead to extremely weak security systems. 

 

 
 

Figure 6:  iButton™ engraving on stainless steel housing. [4] 

 
4.2 Communication 

 
The 1-Wire™ interface used to communicate with the iButton™ is a 

strictly defined serial protocol designed by Dallas Semiconductors. 
Communications with the iButton™ are extremely timing sensitive and half-
duplex, meaning only one device may transmit or receive at any given moment, 
but not both. The 1-Wire™ protocol is based on a master/slave configuration, in 
which the host PC or microprocessor is the master and the iButton™ device is 
the slave. Multiple iButton™ devices are capable of being on the 1-Wire™ bus 
at any given time. 

The transfer of information between the host and the iButton™ is based on 
a time slot, t, with a period between 60uS and 120uS. Within this time slot, a 
"zero" is defined as a low pulse for the whole time, and a "one" is defined as a 
low pulse for up to 15uS, then remaining high for the remainder of the time slot 
[12].   

Two software routines are used for low-level communication between the 
host and the iButton™. Source code is supplied for Motorola 68000-series 
processors. 

 



 7

• TouchReset will check for the presense of an iButton™ and send a 
required Reset pulse to prepare it for data communication. This routine 
will also check for a short circuit of the 1-Wire™ interface. 

 
• TouchByte is the core data transfer routine. Specific iButton™ commands 

are sent using this routine and the response from the iButton™ device is 
returned.  

 
4.2.1 TouchReset 
 

This procedure transmits the Reset signal, a 480uS low pulse, to the 
iButton™ device and watches for a returned Presense Pulse (Figure 7). When 
the iButton™ is inserted into its socket, power is supplied by the 1-Wire™ 
interface. A Presence Pulse is initially generated by the iButton™ to signify to 
the host that it has been connected and is now ready for use. When the 
processor detects the initial Presense Pulse from the iButton™, it responds 
with the TouchReset sequence, which acts as an acknowledgement and 
verification that the iButton™ is ready for data transfer.   
 
 

 
Figure 7:  iButton™ Reset Pulse and returned Presence Pulse. 
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int TouchReset(void) 
{ 
  int i=0; 
  
  // Reset pulse = 480uS (7958 cycles) 
  
  *PK_DIR |= PK4_OUTPUT; // Pull pin low (16 cycles) 
      
  asm( 
  " MOVE.L #304,D0 ; 12 cycles", 
  " DBEQ D0,*  ; 10 cycles if taken, 14 if not"  
  ); 
     
  *PK_DIR &= PK4_INPUT;  // Pull pin high (18 cycles) 
 
  asm( 
  " MOVE.L _PK_DATA,A0", 
  " MOVE.L #1393,D0 ; Set 3360uS timer (40 cycles/loop)", 
  "WAITLOW:  BTST #3,(A0) ; Check pin - 10", 
  " BNE WH  ; Exit loop if line is high (Z=0)-12", 
  " TST D0  ; Set condition codes for D0 - 8", 
  " DBEQ D0,WAITLOW   ; Wait to see if line will go high-10",                                                                   
  " MOVE.B #1,{i}  ; Set i=1 if short circuit", 
  " BRA SHORT   ; If line is still low, must be short  

; circuit",   
  "WH: MOVE.L #153,D0 ; Set 480uS timer for presence detect  

; (52 cycles/loop)", 
  "HL: BTST #3,(A0) ; Check pin - 10", 
  " SEQ D1  ; Put $FF in D1 if low pulse (Z=1) is  

; detected - 12", 
  " OR.B D1,{i}  ; If a low pulse was found, set {i} –  

; 12", 
  " TST D0  ; Set condition codes for D0 - 8", 
  " DBEQ D0,HL  ; Wait for entire 480uS Master RX slot  

; - 10",  
  "SHORT:   ; End" 
  ); 
     
  if (i == 255) // $FF 
  { 

// Presence Pulse detected 
  } 
  else if (i == 1) 
  { 
 // Short circuit of 1-Wire interface 
  } 
  else // i == 0 
  { 
 // No Presence Pulse detected 
  } 
} 



 9

 
4.2.2 TouchByte 

 
This procedure is the core data transfer routine which transmits and 

receives iButton™ commands and responses. The procedure sends a one byte 
long command to the iButton™ device, bit by bit, and subsequently receives a 
one byte long response from the iButton™. Sending and receiving specific 
commands using this routine will allow complete control of the Touch Memory 
iButtons™.  

TouchByte consists of a loop that transfers a single bit of information at a 
time between the host and the iButton™. A single I/O port pin, consistant with 
the 1-Wire™ interface protocol, is used to both send and receive the data. 
Setting the port pin as either an input or output will determine the logic levels 
of the 1-Wire™ interface and affect how the data is interpreted. The state of the 
port pin is varied many times during a data transfer. 

 
unsigned char TouchByte(unsigned char outch) 
{ 
  int i,k; 
  unsigned char inch = 0, databit; // Input byte received from button  
  // BITLOOP: 
  // Tlow0 = 71uS - 75uS 
  // Tlow1 = 11uS 
  
  for (k = 0; k < 8; ++k) // Setup to transmit/receive 8 bits 
  { 
    databit = (outch >> k) & 0x1; // Shift outch to correspond to  

    // correct bit 
   
    *PK_DIR |= PK4_OUTPUT; // Pull pin low (16 cycles) 
   
    // Make sure Touch Memory sees a low for at least 1uS (16  
    // cycles) but not more than 15uS (248 cycles)   
    asm(  
    " MOVE.L #2,D0 ; 12 cycles", 
 " DBEQ D0,* ; 10 cycles if taken, 14 if not" 
    ); 
 
    // If databit = 1, set DIR to INPUT for remaining time in slot  
    // (60uS min.) = 0, keep DIR as OUTPUT for remaining time in slot  
    // (Tlow=70uS) 
    if (databit == 1) 
    { 
 *PK_DIR &= PK4_INPUT; // 18 cycles 
   
 // Delay 5uS (83 cycles) to give the data returned from Touch  

// Memory time to settle before we read it. 
 asm(  
 " MOVE.L #3,D0 ; 12 cycles", 
 " DBEQ D0,* ; 10 cycles if taken, 14 if not", 
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 " MOVE.L _PK_DATA,A0  ", 
 " BTST #3,(A0) ; Sample data line", 
 " SNE {i}  ; i = $FF if received bit = 1" 
 ); 
     
 // Get bit from touch memory 
 inch = inch | ((i & 0x1) << k); // Shift in bits (LSB first) 
     } 
   
     // Wait out remining time slot (60uS min. = 995 cycles) 
     asm( 
     " MOVE.L #37,D0  ; 12 cycles", 
     " DBEQ D0,*  ; 10 cycles if taken, 14 if not" 
     ); 
         
     *PK_DIR &= PK4_INPUT;  // Pull pin high (18 cycles) 
  } 
  
  return (inch); 
} 

 
The standard iButton™ command set allows a decent range of 

functionality and allows low-level interaction with the iButton™.  The 
commands are divided into two groups. A subset of each group is listed below 
[1]: 

 
• ROM Commands make use of the 64-bit unique ID for purposes of device 

identification and broadcasting. 
 

READ ROM. To identify a 1-Wire™ compliant device. iButton™ will 
respond with its 64-bit unique ID. 
 
SKIP ROM. To broadcast data to all devices connected to the bus. 
 
MATCH ROM. To send data to a specific device on the bus. 
 
SEARCH ROM. To identify all 1-Wire™ compliant devices on the bus. 
Each iButton™ will respond with its 64-bit unique ID.  
 

• Advanced Commands are specific commands related to a particular 
iButton™ device function set, making use of on-button memory, real-time 
clock, or temperature sensor modules. 

 
READ MEMORY.  To read one or more consecutive bytes of information 
from the iButton™ given a valid starting address. 
 
READ/WRITE SUBKEY. To read/write one or more consecutive bytes of 
information from/to a password-protected page. 
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READ/WRITE SCRATCHPAD. To read/write one or more consecutive 
bytes of information from/to the scratchpad (temporary storage) area. 
 
COPY SCRATCHPAD. Move the data within the entire scratchpad area 
into a password-protected page. Automatically erases scratchpad area 
when transaction is complete. 
 
The TMEX (Touch Memory EXecutive™) API by Dallas Semiconductor 

provides a layer of abstraction between a user's application code and low-level 
routines, which may be useful depending on the customer's requirements.  In 
addition, when writing Java™ applets for the Java™-Powered Cryptographic 
iButton™, much of the low-level functionality is performed by the Java™ 
Virtual Machine, allowing the user to focus on application-level code. 

 
5 Potential Areas of Attack 
 

Many of the attacks possible to exercise on the iButton™ are common to 
other embedded system attacks.  Kömmerling/Kuhn have defined four high-
level attack categories which were used in smartcard analysis and could be 
duplicated with the iButton™ [2]:  
 
• Microprobing consists of invasive techniques used to access the device 

internals directly. 
 
• Software attacks rely on the normal communications interface of the 

device and, by having the device execute custom software, exploit security 
vulnerabilities.   

 
• Eavesdropping techniques monitor the external connections to the device 

and any stray EMI/RF noise radiated from the device during normal 
operation. 

 
• Fault generation techniques use abnormal environmental conditions to 

intentionally cause failures in the device. By doing so, the device may 
function outside of its intended feature set. 

 
Differential Power Analysis cannot readily be used, unless invasive 

methods are successful in accessing the iButton™ internal battery power 
supply rail.  However, it might be useful to analyze the current consumption 
and characteristics of the 1-Wire™ interface. 
 
5.1 Invasive Attacks 
 
 Invasive attacks require access to the physical device and are often 
destructive. Depending on the complexity of the device, special laboratory 
techniques and chemicals might be used. An example would be the depackaging 
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of smartcards [2], in which hot fuming nitric acid is used to gain access to the 
die.  

Many devices contain tamperproofing mechanisms against invasive 
attacks, which will render the device inoperable if tampering is detected. In 
order for invasive attacks to be successful, access to the devices internals must 
be completed without detection. 
 
5.1.1 Uniqueness 
 
 The 64-bit identification, comprising the family code, serial number, and 
CRC is guaranteed by Dallas Semiconductor to be unique.  Systems designed 
solely around uniqueness often have problems. Two examples are the cellular 
phone system and ethernet MAC addresses.  
 The cellular phone system is designed around the premise of a unique 
electronic serial number (ESN) and mobile identification number (MIN) pair for 
each user [7]. If an ESN/MIN pair is cloned and entered into another phone, 
security is nil and the telephone system will not be able to detect the difference 
between the actual legitimate user and the cloned phone.  
 Ethernet MAC addresses are trivial to clone in both hardware and 
software, allowing one to bypass copyright protection and launch denial-of-
service and race condition attacks.  
 It might be possible to clone the iButton™ by modifying the unique ID by 
invasive or non-invasive techniques. If the 48-bit unique serial number is 
changed, the CRC must also be changed, since the value will now be incorrect. 
The 64-bit unique ID is marked onto the iButton™ in two different locations: 

 
• Stainless Steel Housing. The proposed methods of attack in this paper 

focus on the electrical properties and system functionality of the device, so 
the etchings on the physical iButton™ housing need not be considered.  

 
• Internal ROM. The ID is created by selectively removing 3-micron 

polysilicon links, each which define a "zero" or "one". The links are sealed 
with a protective layer of glass, so that any tampering attempts would be 
evident [11]. It may be possible to vary the ID by opening closed links or 
reforming open links. If the device still functions and the particular attack 
is successful, having physical evidence of tamperproofing, such as the 
broken glass layer, is a moot point.   

 
5.1.2 NVRAM Access 
 
 A common attack, fitting into the Microprobing group, is to gain physical 
access to the pin connections or wire bonds of the internal memory of a device 
and dump all memory locations. This is done in hopes of obtaining critical data, 
encryption keys or other information that is considered to be secure. 
 The Java™-Powered Cryptographic iButton™ includes a tamper-detection 
feature that will immediately erase all internal NVRAM when the physical 
perimeter of the device is compromised.  
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5.1.3 Processor Clock Skewing 
 
 Gaining external control of the clock signal of the system can be a valuable 
tool.  
 
• Increasing clock speed will allow the attacker to view more iterations of 

calculations or look for repeated sequences. This attack is useful when 
analyzing time-based hardware token devices. 

 
• Decreasing clock speed will allow the attacker to slow down or single-

step through operations and analyze the data using external measurement 
tools.  

 
• Halting system execution at a known point will allow the attacker to 

repeatedly examine a particular operating condition more closely. This is 
done by applying the same number of clock cycles each time after reset. 

 
• Inducing calculation errors is often possible by inducing abnormal clock 

signals into the system. Calculation or execution errors may lead to 
conditions where critical information is leaked or incorrectly handled. 

 
 The processor internal to the Java™-Powered Cryptographic iButton™ is 
driven by an unstabilized oscillator ranging from 10 to 20MHz [13]. By having 
the iButton™ vary its clock frequency, it makes clock skewing attacks more 
difficult. 
 
5.2 Non-Invasive and Software Attacks 
 
 With non-invasive attacks, the physical device is not harmed or tampered 
with. Non-invasive and software attacks often, but not always, make use of the 
normal operating conditions of the device. Once the attack is designed and 
successful, the results are extremely reproducable from one device to another.  
 Many of the software attacks on the Java™-Powered Cryptographic 
iButton™ are launched through the 1-Wire™ interface, due to the fact that it is 
the only communications path. A Java™ program would be loaded into the 
device using the normal communications means, and executed normally as a 
Java™ applet. The possibility of software attacks are great and the area should 
be investigated thoroughly. There are specific Java™ related problems that 
could be used to help launch an attack, including byte code verification, 
problems with code signing, and resource starvation. Any Java™ applet loaded 
onto the Java™-Powered Cryptographic iButton™ can be a target for attack. 
 
5.2.1 Spoofing 
 
 In the same vein of the invasive uniqueness attacks, a non-invasive method 
of spoofing of the 1-Wire™ communication signal is entirely feasible. By 
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monitoring the communication stream of the Touch Memory or Java™-Powered 
Cryptographic iButton™ during normal usage, secret key or other critical 
information may unknowingly be transmitted.  
 Imitating an iButton™ with electronic circuitry to clone a device would also 
be possible. Full device "emulation" would be easier accomplished with the low-
featured Touch Memory iButtons™. Depending on the system implmentation, 
it would be trivial to imitate an iButton™ and transmit its cloned 64-bit unique 
ID to the host PC in hopes of the host transmitting and revealing critical data. 
 
5.2.2 Misuse of Memory Management 
 
 If hardware or software memory management is unused, misused, or 
misconfigured, it may be possible to access protected memory and scratchpad 
areas that are considered critical. Due to programming errors of particular 
Java™ applications running on the iButton™, critical data or secret keys might 
not be cleared from memory, thus giving the attacker information that may be 
used in future attacks. The attacking software application would attempt to 
dump all memory areas and access any memory-mapped peripherals. The 
Kerberos 4 exploit takes advantage of such a situation, in which the username 
and Kerboros realm of the previously logged in user was recovered due to 
improper clearing of critical memory [8].  

 
6 Conclusions 
 

Choosing the iButton™ over other hardware token devices for system 
implementation is dependent on the customer's specific needs. The iButton™ is 
definetely the most robust of the existing hardware token devices. The tamper 
detection and security features of both the Touch Memory and Java™-Powered 
Cryptographic iButton™ make them useful for implementations where physical 
attack may be commonplace.  

The Java™-Powered Cryptographic iButton™ is an attractive solution for 
companies that would like to execute custom Java™ applications on-the-fly or 
on-button for security purposes. Although the iButton™ appears to be 
sufficiently secure for many applications, care must still be taken to assure that 
the implementation surrounding the device is also secure.  

The fact that the iButton™ has not been widely deployed in the United 
States might make clients, who are used to smartcards, feel uncomfortable. The 
iButton™ is used extensively in other coutries, and supporting data of the 
success of the product can be found on the Dallas Semiconductor web page [3].  

Further research will be done to attack the assumed security of the Java™-
Powered Cryptographic iButton™, which is the most directed for use in 
Internet commerce applications.  
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